COMPUTATIONAL FRACTURE MECHANICS FOR COMPOSITES STATE OF THE ART AND CHALLENGES

Ronald Krueger

NIA - Senior Staff Scientist

CAA/FAA Workshop on Adhesive Bonding, Gatwick, UK, October 2004

NATIONAL INSTITUTE OF AEROSPACE

T. Kevin O'Brien, ARL/VTD at NASA LaRC James Reeder, NASA LaRC Isabelle Paris, Composites Innovations Inc. - Montreal James Ratcliffe, NRC at NASA LaRC Pierre Minguet, The Boeing Company - Philadelphia D.M. Hoyt, NSE Composite, Seattle Gerald Mabson, The Boeing Company - Seattle Jeff Schaff, Sikorsky Aircraft Catherine Ferrie, Bell Helicopter Textron Inc. - Fort Worth Larry Ilcewicz, FAA - Seattle Curtis Davies, FAA - Atlantic City

OUTLINE

- Delamination sources at geometric and material discontinuities
- History of skin-stiffener debonding testing and analysis
- Fracture mechanics methodology for delamination onset prediction
 - Experiments to determine fracture toughness
 - Finite element analysis to compute mixed-mode energy release rate
- Past studies on skin/stringer debonding
 - A shell/3D modeling technique
 - Application of Fracture Mechanics Methodology
- Summary
- Outlook
- Summary of FAA/ASTM D30 Workshop
- Remaining challenges

DELAMINATION SOURCES AT GEOMETRIC AND MATERIAL DISCONTINUITIES

NATIONAL INSTITUTE OF AEROSPACE

HISTORY OF SKIN/STIFFENER DEBONDING PRESSURIZED COMPOSITE FUSELAGE

Composite Fuselage Technology Development*

HISTORY OF SKIN/STIFFENER DEBONDING NATIONAL POST-BUCKLED THIN-SKIN ROTORCRAFT FUSELAGE AEROSPACE

- Post-buckling behavior drives weight in thin-skin rotorcraft fuselage
- Buckling generates severe stresses on the bondline between skin and stiffeners

*Pierre Minguet, Boeing

HISTORY OF SKIN/STIFFENER DEBONDING POST-BUCKLED THIN-SKIN ROTORCRAFT FUSELAGE

Testing of Stiffened Shear Panel Boeing, Philadelphia*

Skin

NATIONAL INSTITUTE OF

AEROSPACE

CURRENTLY USED FAILURE METHODOLOGIES

- Stress-Based Failure Criteria
- Damage Mechanics
 - Decohesion element (interface elements) Carlos Davila, Pedro Camanho, to be implemented in ABAQUS 6.5 released in December 2004
- Linear Elastic Fracture Mechanics
 - Captures discontinuity of interlaminar disbonds or delaminations
 - Stress singularities not an issue
 - Characteristic material data can be generated using simple specimens and tests

FRACTURE MECHANICS METHODOLOGY

NATIONAL INSTITUTE OF AEROSPACE

Energy Release Rate

tearing mode III

 $G=G_{I}+G_{II}+G_{III}$

Failure occurs if local mixed mode energy release rate exceeds a critical value !

EXPERIMENTS TO DETERMINE FRACTURE TOUGHNESS

NATIONAL INSTITUTE OF AEROSPACE

Mode I - DCB Specimen

• Mode II - 4ENF Specimen*

in plane shear mode ll

• Standard in development

*Rod Martin, MERL - Barry Davidson, Syracuse University

EXPERIMENTS TO DETERMINE FRACTURE TOUGHNESS - continued

• Mixed Mode I/II - MMB Specimen*

crack opening + in plane shear mode I mode II

• ASTM D6671

2D MIXED MODE FRACTURE CRITERION IS NATIONAL **INSTITUTE OF STATE OF THE ART** AEROSPACE DCB, Mode I MMB, Mode I and II 4ENF, Mode II G_c, J/m² curve fit 0.6 0.2 0.4 8.0 0 Mixed Mode Ratio G_{\parallel}/G_{τ}

3D MIXED MODE FRACTURE CRITERION IS MISSING TODAY

tearing

• Mode III - ECT Specimen*

• Failure surface $G_c = G_c(G_{lc}, G_{llc}, G_{llc})^{**}$

GIIIC GIII/GT 1.0 GII/GT 1.0 GII/GT

• Standard in development

*James Ratcliffe,NRC at NASA Langley Research Center

STATUS OF FRACTURE TOUGHNESS TESTING NATIONAL FATIGUE ONSET VALUES

لسبب

 10^{7}

10⁶

Mode	Specimen	Static	G _c vs. N	da/dN	ļ					
I - opening	DCB	✔ D5528	✔ D6615	normalized static R-cur	by ve					
ll - shear	4ENF	🙇 stable	X small displacement	small dG	/dA ?					
	3ENF	X unstable (JIS 7086)	X small displacement	X small dG	/dA ?			Duluut		
	ELS	X unstable (ESIS)		normalized static R-cur	by ve ?	400 –	in S2/E7T1 DCB Specimen			cimens
+	MMB	✔ D6671		normalized by static mode I R-curve		350 -	G _{Imax} =cN ^d	· · · · · · · · · · · · · · · · · · ·	E	▲
III - tearing	ECT	k				300 -			```	ASTM Standard D611
Isabelle Paris, Composites Innovations Inc Montreal					G _{Imax} , J/	250 - /m ² 200 - 150 -				

N, cycles to delamination onset Kevin O'Brien, ARL/VTD at NASA LaRC

10¹

DCB fatigue data
curve fit to data

 10^{2}

- curve fit ± one standard deviation

10³

 10^{4}

10⁵

100

50

0

⁰10

STATUS OF FRACTURE TOUGHNESS TESTING NATIONAL FATIGUE PROPAGATION VALUES

 Proposed Fatigue Delamination Growth Characterization: Normalizing by the Static R-Curve*

NATIONAL INSTITUTE OF AFROSPACE

Tapered Elements

- Analytical Closed Form Solutions for Simple Configurations
 - Edge delamination Kevin O'Brien
 - **SUBLAM**
 - Georgia Tech, Erian Armanios

lw+

W-

Concentrated line

force T_3

- Developed by Material Science Corporation under SBIR contract with the — FAA for use with General Aviation bonded joints - Gerald Flanagan
- Can be used to calculate SERR as a function of disbond length

1

2

Distributed

tractions p(y)

Ζ

Shear Loading

• "Crack Tip Element" - Barry Davidson

- Closed-form linear-elastic solution aimed at overcoming computational difficulties in determining strain energy release rate and mode mix.
- Obviates need for locally detailed 2D and 3D FEMs
- Limited to linear analysis

Virtual Crack Closure Technique (VCCT)

Two and three-dimensional analysis

ANALYSIS TOOLS VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT)

NATIONAL **INSTITUTE OF** AEROSPACE

Interface Element for Mixed Mode Fracture Analysis*

- Node pair 2,5 are initially bound together
- Node pairs 1,6 and 3,4 are unconstrained and act to sense approaching crack

* G. Mabson, Boeing, Patent Pending

 $\frac{1}{2} \frac{v_{1,6} F_{V,2,5}}{b d_L} = G_I \ge G_{IC}$

Mode II treated similarly

 G_I = mode I energy release rate G_{IC} = Critical mode I energy release rate

National Institute of Aerospace

• Fracture Interface Elements Along Crack Plane*

- By using a series of overlapping interface elements, delaminations can be propagated along a predefined path.
- Direction of propagation is not prespecified.
- Propagation is integral part of the analysis.
- 3D VCCT interface element for delamination available.
- ABAQUS implementation expected for December 2004.